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1. First Variant of the Model. Numerical investigation of hydrodynamic resistance and 
temperature conditions in different heat exchangers reduces to the determination of the mean 
velocity and temperature fields in turbulent flows in channels with complex shapes. Con- 
siderable attention has been paid during the last few decades to the development of methods 
to solve similar problems. 

A theoretical model for turbulent transfer was developed in [I, 2] which could approxi- 
mate all six components of the symmetric turbulent shear stress tensor and three components 
of the turbulent heat flux vector in the entire flow field right up to the very walls. This 
model was widely used to compute turbulent flows and heat transfer in steady flows in dif- 
ferent channels (see [3]). 

The model [I, 2] is further developed in [4, 5]. 

With the modifications introduced in [4, 5], the turbulence model appears as follows. 

Turbulent flow is considered as the result of the superposition of random, nonstationary 
eddies on a certain mean flow. Inside each random and rapidly disappearing eddy with a cer- 
tain transverse dimension 21, fluid portions with transverse dimension I (mole) are trans- 
ferred over a distance of the order I. 

The concept of integral length scale for turbulence L(M) is introduced to reflect the 
characteristic transverse dimension of nonstationary eddies in the neighborhood of the vari- 
able point M of the flow and transferred in this eddy by the mole: 

d = ~L, 

where d is the "diameter" of moles; ~ is an empirical constant. 

Furthermore, the concept of directed turbulence length scale Ls(m) is introduced to in- 
dicate the characteristic mixing length of the moles from the neighborhood of the point M in 
the direction s. 

To the first approximation, the integral length scale L(M) is considered to be asso- 
ciated only with the characteristic distance from the point M to the channel wall and de- 
termined by the equation 

L ~ d~, 

where  l ( 3 )  i s  t h e  d i s t a n c e  f r o m  the  p o i n t  M t o  t h e  c h a n n e l  w a l l  in  t h e  d i r e c t i o n  ~.  

The d i r e c t e d  t u r b u l e n t  l e n g t h  s c a l e  i s  d e t e r m i n e d  by the  e q u a t i o n  

I 3 I ~ i  �9 
L 2 7~ ,J --[-[cos(l ,s)  ld~. 

A w e i g h t i n g  f u n c t i o n  ~(M, M0) i s  i n t r o d u c e d  t o  r e f l e c t  t h e  p r o b a b i l i t y  of  t h e  mole  
passing through the given point M0 from the neighborhood of the variable point M of the sur- 
rounding flow field. The structure of the weighting function was corrected during the de- 
velopment of the model in [2, 5]. In [5] the function was used in the form 

where s is the distance between the points M0 and M; Xs0 is the value of the order of two 
characteristic mixing lengths of the mole in the direction s in the neighborhood of the point 
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M0; a is an empirical constant. 

The model is based on the following quantitative hypotheses. 

]. The magnitude of the characteristic velocity of the mole moving in the neighborhood 
of the point M in the direction s is proportional to the magnitude of the deformation 18V/~nl 
of the mean velocity field at the point M and to the directed length scale Ls at this point: 

[ O, if ? , < ~  
V~ ~ = ~  ~T21 ov [2 ? , ~ - ~ - ] a v ~ ] -  ( 1 . 1 )  

2. The interaction of the moving mole with the surrounding fluid is described by the 

equations: 

du~ = --~3 A~ ( u , - - u ~ ) d c  dr*  = + A~ @ --  r*) dt,. ( 1 . 2 )  

where u~ is the velocity component of the mole along the axis xi; T*, temperature o~ the 
moving volume; u i and T, values of these functions in the surrounding fluid; R, mole radius; 

�9 (+)= 
In [I, 2] it was assumed that b~ = coast, b2 = coast. In [5] the computational scheme 

for the temperature field in flows with Pr ~ I, the coefficients b2 and b~ were determined as 

a function of the local Reynolds number y,. 

An approximate analytical solution of system (1.2) makes it possible to obtain velocity 
fluctuations u i and temperature fluctuations T' at the point M0 as the mole from the neigh- 

borhood of the point M passes through it: 

~; (Mo) = V~ (M) ~ ~ )  ~os (s, x0"+ ~ (M) --  ~ (Mo)] A (ps); ( ~. 3) 

T'(/Y/o) = IT(M)  - -  T (M~ lh(gps), ( 1 . 4) 

. i ~i - -  e-ml), .~: = 3A~IRV:, j % = AJA~. w h e r e  s = [ M M  o [, fo (x) = e--lxl, f 1 (x) ---- ]-7]-  

Turbulent shear stresses and heat flux at the point M0 are obtained in the form of corre- 
T ! 

sponding volume integrals of the expressions Fik(M, Mo) = --uiu k and El(M, M0) = -u~T' with 

weighting function cp (M, M0): 

- -  pu;u'~ = p ~ Fi~ (M, Mo) a# (M,, Mo) d~,.~ 
D 

�9 ' = I E~ (M,  Mo) d~. cpuiT cp . . Mo) ~p (M',~ 
D " 

After neglecting small terms (see [2, 4]), the expression for the turbulent shear 
T stress-tensor component --0u~uj and the components of turbulent heat flux --cpu~T i are obtained 

in the form 

, , ~ ,a~  (1 5)  
-- u~u~ = -- P~ + 2~!-s ; 

au~ ~ ~ 
__uiuh =8~/~-~i -t- Shh 3-~x ~ (i=/=,1r �9 (1 . 6 )  

u'~T---'; h ~-r - -  = 8~ ~-~ , ( 1 . 7 )  

where 

D 
(1 ~ 

e~ (Mo) = ~ V:fo (ps) /1 (ps) q~ (M, Mo) co s~ (s, x 0 d~; 
D 

~ (Mo) = .f V',/o (psi h (~,P~) sq~ (M,  Mo) ~o~ ~ (s, z~) d~. 
D 

(1 .9) 

(1.10) 
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In order to make the numerical solution of the heat and momentum transfer problem ef- 
m 

fective, it is possible to simplify the expressions for Pii, gii, and g i in Eqs. (1.8), 
(1.9), and (1.10) using Eq. (1.1) to integrals along the line parallel to the axis x i or to 
the local formulas (see [2, 5]). 

The model [1, 2] with [4] was used to compute steady velocity and temperature fields 
in different channel flows (see [6-8] and others). 

Figure I shows an example of the computed temperature nonuniformity O along the oerim- 
eter of a heat-emitting rod in a triangular grid of closely packed rods for different ratios 
of thermal conductivities of the rod and the fluid and Re (from [7]). Here O = Xf(T -- To)/ 
QR2; Xr, Xf are the thermal conductivities of the rod and the fluid; Q is the characteristic 
volumetric heat generation in the rod; R is the rod radius; I-4 are for Xr/X f = 0.27, 0.68, 
1.69, 6.35; I'-4' are experimental data from [9]. Similar results make it possible to obtain 
an understanding of overheating and thermal stresses in heat-generating elements. 

Computations of velocity fields in the hydrodynamic stabilization region in fluid flows 
in circular and plane gaps were carried out in [10] using the approximations (1.5)-(1.7). 
It was mentioned there that the computed development of turbulent flow qualitatively agrees 
with the existing experimental data. However, a more rapid stabilization in the entrance 
region is observed in computations than in the experiment. Computed radial shear stress dis- 
tributions u'v' at different transverse sections of the flow in a circular pipe are shown in 
Fig. 2 (Re = 285,0UU). Here I-3 represent x/R = 8.28, 41.4, and 190; y is the distance from 
the pipe wall; i, o, [] are experimental results from [ii] for the same sections. 

Thus, approximations of turbulent shear stresses (1.5), (1.6) with (1.1) which are well 
justified to compute steady flows, may have some error in the central part of the flow with 
hydrodynamic stabilization (curve 2 in Fig. 2). 

The point here is, apparently, the turbulence intensity in the moving part of the fluid 
depends strongly on its history, i.e., in the hypothesis for the fluctuating energy of the 
mole it is necessary to include convective terms of turbulent energy in the moving fluid. 

Many studies have appeared in recent years in which the models for turbulent transfer 
are based on equations for turbulent energy (see [12-15] etc.). Such models, in principle, 
should better describe the hydrodynamic stabilization region than the three-dimensional model 
[I, 2]. However, such models in the existing literature are applicable basically only to 
two-dimensional flows. Hence, in order to retain the advantages of the approximations for 
turbulent shear stresses (1.5), (1.6) and take into account certain advantages of the ap- 
proach from [12-15] and others, it is necessary to combine ideas used in the models of the 
type [I, 2] and models with turbulent energy conservation equation. 

In the following development of the model for turbulent transfer [I, 2], Prandtl's hypo- 
i 

thesis (1.1) for fluctuating velocity of the mole Vs(M) is replaced by a certain approximate 
equation representing the equation for the fluctuation energy balance. This equation along 
with hypothesis for the directed turbulent length scale Ls can also be used to determine 

i 
velocity fluctuations of the moles Vs(M) generated in the flow. 

An algorithm for the approximation of conservation equation and its application in three- 
dimensional model was formulated by Buleev, verification of the model and the determination of 
empirical constants were carried out by Zinin. 

2. Approximation of the Conservation Equation for Fluctuating Energy. The equation for 
turbulent energy is expressed in the form 

q2 .._:--7"2 # 2 # 2 
u~ + U 2 ~ us~ 

which is written in the form 

h=l 1o~ -- ~ 2~;~h--2v '~ t,~--xxk) + "gT-xh[v-5-D-xh----~ -u'kp'- ~ "  (2.1) 
4 , h : l  i , h = l  h = l  ..i~1 " 

The first two terms on the right-hand side of Eq. (2.1) describe the generation of fluc- 
tuating energy FI and F2 due to the dissipation of kinetic energy of the basic flow, the third 
terms describes dissipation s of the fluctuating energy, and the last three terms denote dif- 
fusion of fluctuating energy and pressure energy. 
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8 
-7"70u i 

The expression F2=--2 ~ u~u~-f~x~ is obtained from Eqs. (1.5) and (I .6) assuming that 
~,h=l 

m 
Pii = P, cii = c. As a result we have 

F~ = 2elOV/On] ~. 

It is seen that the expression F2 is similar in structure to the production term F~. 

Following the traditional manner (see [12, 13]), the dissipation s is approximated by the 
expre s s ion 

r 
g 2 

~,~=~ \ ~ ]  ~ (~ + ) q ,: 

where c 2 i s  an e m p i r i c a l  c o n s t a n t  which i s  c l o s e  t o  u n i t y  o r  a weak f u n c t i o n  o f  the  l o c a l  
Reyno lds  number y , .  

P r e s s u r e  f l u c t u a t i o n s  p '  in  t h e  e x p r e s s i o n  - ~ ' p ' ,  as  a l s o  u '  and T * w i l l  be c o u p l e d  w i t h  
the  p a s s a g e  o f  moles  t h r o u g h  t he  n e i g h b o r h o o d  o f  the  g i v e n  p o i n t  wh ich ,  t o  a c e r t a i n  e x t e n t ,  
a l s o  conveys  t he  e x c e s s  p r e s s u r e  w i t h i n  i t s e l f .  

I f  t he  t o t a l  s t a t i c  p r e s s u r e  in  t he  t u r b u l e n t  f l o w  i s  e x p r e s s e d  in t he  form p + pP, 
where P = ( 1 / 3 ) ( P z ~  + P22 + P33) ,  t h e n ,  in a c c o r d a n c e  w i t h  the  q u a l i t a t i v e  model of  t u r b u l e n t  
t r a n s f e r  of  s c a l a r  c o n s e r v a t i v e  c h a r a c t e r i s t i c  we t a k e  

�9 , , ~ O p  . ~. ~ Oq ~" - -  u'hP = 8h~@_.x~.~ OP ~ Op -- 

Here Ckk are positive coefficients. Put Ckk = 0Ckk, 0 < 0 < I, then 

p ukp =Osh~ i__.Op + 0 oq ~ 
o o=~ --g- skh ~ .  

Experimental studies on the structure of turbulence carried out by different authors 
do not establish the practical role of the term (3/3Xk)0Ckk(3P/3Xk) in Eq. (2.1) and hence it 
is neglected now. 

The third moment UkUiU i for the fluctuations u. and u~ at the point M0 will be directly 
i 

computed using the same three-dimensional model [I, 2]. We get from Eq. (1.3), retaining the 
major terms 

J 

~ (Mo) ~ V '~ ( ~  ~o~ (~, z~)/~; , ( 2 . 2 )  

- u~.~.~ - ~ v ' ~ ( M ) / ~  (M, Mo) ~os (~, x~) d~. ( 2 . 3 )  
i=l D 

"The expression within the integral sign in Eq. (2.3) is a sign-variable function. Hence, 
there is a logical basis to neglect the terms with third moments in Eq. (2.1). Thanks to the 

m simplicity of the terms of the type (2.3), we replace now derivatives (3/3Xk)[V'3f~]i or ECkk x 
(~q2/3Xk) and combine them with approximations for --u~p' We assume 

3 

I , , ~K~ , ' ' T m a q  ~ 
p uhp --2~ uku~ui ~ush~7:x ., 

i=1 �9 ~ " 

where 0 = 0/3 + ~. 

Finally, in the case of stationary field of the mean flow it is necessary to put ~q2/ 
~t = 0 in Eq. (2.1). 

The semiempirical approximation for the stationary turbulent energy equation (21oi) is 
finally written in the Cartesian coordinate system: 

0q 2 4_0 ( ~'shh) Oq~ = 2 ( t +  ---~-e ~L2 j ~OV (2 4) 

S ince  the  model ( 1 . 5 ) - ( 1 . 1 0 )  does  n o t  r e q u i r e  t he  t ime  a v e r a g e d  mean k i n e t i c  e n e r g y  q2 
of  t h e  f l u c t u a t i n g  mo t ion  in t he  s i n g l e  n e i g h b o r h o o d  of  the  p o i n t  M bu t  r e q u i r e s  the  i n i t i a l  
velocity V' of moles moving from the neighborhood of the point M, it is necessary to obtain a 
relation connecting V'(M) and q2(M). The expression for u!---2- from Eq. (I.5) is used for this 
purpose. I 
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m 
Ell = E22 = s we get approximately 

q= (M) ,~, .[ V'~]~ (ps) ~ (M r M) dT. 
D 

Equation (2.5) is rewri-tten in the form 

q~ (M) ~ • (%) V '2 (M) or V '2 iM) ~, ~ q2 (M),, 

w h e r e  u ( ? , )  i s  an  e m p i r i c a l  f u n c t i o n  c l o s e  t o  f 2 ( a i ~ i ) .  

A n i s o t r o p y  i n  t h e  m o l e  d i s p l a c e m e n t  v e l o c i t y  i n  d i f f e r e n t  d i r e c t i o n s  
e q u a t  i o n  

S~mmingmE q. (1.5) with respect to the index i, taking into account (1.8), and assuming 

The expressions for 
using Eqs. (2.4) and (2.6) 
axis xi: 

(2.5) 

(2.6) 

is described by the 

, 8 
V; 9" L~ V, ll where Z2 | . ~  2 -----~ ,'." -- T L~. (2.7) 

(I .5)-('1.10) for Pii, e~i, ehli can be written in the following form, 
after simplifying them to integrals along the line parallel to the 

P~i (Mo) = --g" o Vi /~ (ai~) H (~O d~i; ( 2 . 8 )  
-1  

1 

e~ (Mo) = c,Lio S + V'J~ (ai~') 11 (ai~Ji) G (~i) d~ji; ( 2.9 ) 
�9 7-* 

1 
h f I t eii (M0) = c*L~~ .J T Vilo (aigi) 1, (~ai~r) G(.~0 dgt,: 

_,  (2. I0) 

where 
�9 . .  ... ~A, 

x~ -- X~o ai = ~zL~op~, , Pi -- BV, i, ~i = aLio , 

H(~) = 61~P(I- Ill), ~(~)= l~P(i- I~I), 

t + )  0,~' bl ~ b2 I 
= "  b, + b~ ' cl = --s ~ a  0. t8 .  

The c o e f f i c i e n t  V t a k e n  f r o m  scheme 1 . 1 )  i s  i n t r o d u c e d  h e r e  t o  k e e p  t h e  c o n t i n u i t y  o f  t h e  
a l g o r i t h m .  The c o e f f i c i e n t  a i  = ~ L i 0 P i  p r e s e n t  i n  t h e  a r g u m e n t  o f  f u n c t i o n s  f0  and  f l  i s  
written in the form 

a~:= ~, Li , ( 2 . ' I 1 )  

wh ere 

1 2 ( r  2 ~" 1 L~V ( 2 . 1 2 )  c = = - ~  - ~  ( b , + b = ) ,  ~ , = - ~ 7 y .  
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Arguments of the functions f0 and f: can be computed as in [4], i.e., according to ( I , 1 )  as- 
sume 

. -  L~IOVI ~* = ?* = - ~ - I ~ ! "  

It is not worth replacing only ~, by T, in the central part of the flow where the quan- 
tity 3V/3n is small. 

It is important to mention here that if only production and dissipation terms are re- 
tained in Eq. (2.4), it will almost identically reduce to the hypothesis for fluctuating ve- 
locity of the mole (1.1), i.e., the hypothesis (1.1) can be considered the simplest form of 
turbulent energy conservation equation. The quantities ~ and c 2 in Eqs. (1.1) and (2.4), 
respectively, are related by the expression ~2 ~ 2/c 2. 

Equation (2.4) for the given coefficients and the right-hand side is solved numerically 
by finite-difference method. 

After the numerical solution of Eqs. (2.4) and (2.6), the resulting values of V'(M) are 
m 

used to compute normal stresses and coefficients ~ii and E~i using Eqs. (1.9) and (1.10). 
Momentum equations are solved after this. In view of the nonlinearity of momentum equations 
and Eq. (2.4) the hydrodynamic problem is solved by successive approximations. 

For massive computations of velocity and temperature fields in different channels Eqs. 
m 

(2.9) and (2.10) for ~ii and E~. can be simplified locally 
ii 

L~V' 
~ = cJo (~) f: (~) ~-TZ' c: = o.i8; (2 .  ~ 3) 

h L~V" 65 
8ii  = Cl/o (~) i l  ( ~ )  -'~-,  ~ = Z" ( 2 .14  ) 

3. Computation of Steady Velocity Field in a Circular Pipe. The values of empirical 
coefficients c, @, and • in Eqs. (2.4) and (2.6) were determined in the computation of 
velocity field in turbulent flow in a circular pipe. 

The momentum equation for steady mean flow in a circular pipe has the form 

t a r ( v + e ~ ) a w  t @ 
r ar 7r = p oz" ( 3 . 1 )  

Introducing nondimensional variables 

~=~, u=~ r R~=--= 2,~ 2-ur ( 3 . 2 )  

where a is the radius of the pipe, v, 2 P la z , Eq. (3.2) is rewritten in the following 
manner : 

t o OU 
- T ~ $ .  l + ~=2@. 

The e q u a t i o n  f o r  the  c o n s e r v a t i o n  of  t u r b u l e n t  e n e r g y  f o r  such a f l o w  a l o n g  wi th  the  
e q u a t i o n  f o r  f l u c t u a t i n g  v e l o c i t y  of  t he  mole has  the  form 

[ a ~,-i 2 

'~ ~ t  ~ ~) q 
= 3L  L 

(3.3) 

In the computations carried out by the authors the factor (I + gm/~) in the terms de- 
scribing the production and dissipation of fluctuating energy was approximated by the rela- 
t ion 

~'~ 0 2 L2] av[. 
l + T = i +  ' ~ - I ~  

The coefficient ~rr/V in Eq. (3.3) was computed from 

47 



$,I17 

0,08 

qo4 

/ 
I 

o,4 o,8 y 

Fig. 4 

2;0 

o,4 
0 o,4 q8 y 

Fig. 5 Fig. 6 

0,a \ 

o,4 'x " ~ x 3 ~  

200 400 ~rr/P 

L~IOV ~'~ = 0.18 ]0 (n) A (n) T / ~  ' 

where q = 65/y,. 

Preliminary solution of Eq. (3.1) along with Eqs. (3.3) and (2.9) showed that in order 
to obtain satisfactory agreement with experimental data of the computed fluctuating energy 
fields q2 the fields of averaged velocity and averaged velocity fluctuations, it is neces- 
sary to give the following values to the empirical coefficients and functions x~,) : 

b ~ = l . 6 ,  b , = 6 . 4 , ;  O = 0 A , :  •  t 

F i g u r e  3 shows t h e  s o l u t i o n  f o r  qe in  t h e  f l o w  t h r o u g h  a c i r c u l a r  p i p e  ( c u r v e  2 ) .  The 
c u r v e  1 r e p r e s e n t s  e x p e r i m e n t a l  d a t a  of  L a u f e r  [17] (Re = 5 " 1 0 5 ) .  

m 
Computed p r o f i l e s  of  eddy v i s c o s i t y  c o e f f i c i e n t  ~ l l / V  and rms f l u c t u a t i o n s  g l / v ,  and 

~ 3 / v ,  in  t he  f l o w  t h r o u g h  a c i r c u l a r  p i p e  a r e  shown in  F i g s .  4 and 5. The c u r v e s  1-5 in  F i g .  
4 a r e  t h e  compu ted  r a d i a l  d i s t r i b u t i o n  of  v i s c o s i t y  c o e f f i c i e n t  f o r  ~ = 200, 500,  1000, 5000,  
and 2 0 , 0 0 0 ,  r e s p e c t i v e l y  (Re = 6000,  17 ,000 ,  3 8 , 0 0 0 ,  230 ,000 ,  and 1 m i l l i o n ) ,  o i s  t h e  eddy 
v i s c o s i t y  p r o f i l e  computed  f r o m  L a u f e r ' s  d a t a  [17] (@ = 1 0 , 0 0 0 ) .  Curves  1 and 3 in  F i g .  5 
a r e  t h e  e x p e r i m e n t a l  v a l u e s  of  t h e  rms f l u c t u a t i o n s  of  t he  v e l o c i t y  gl /v , ,  o 3 / v ,  [ 1 7 ] ,  t h e  
c u r v e s  2 and 4 d e n o t e  t h e  c o r r e s p o n d i n g  computed  v a l u e s  of  rms f l u c t u a t i o n s  (Re = 5 0 0 , 0 0 0 ) .  

4 .  C o m p u t a t i o n  of  t he  Hydrodynamic  S t a b i l i z a t i o n  Reg ion .  C o m p u t a t i o n s  of  v e l o c i t y  
f i e l d s  in  t h e  i n i t i a l  s e g m e n t s  o f  t h e  c i r c u l a r  p i p e  and the  p l a n e  gap were  c a r r i e d  u s i n g  the  
n u m e r i c a l  scheme f o r  t w o - d i m e n s i o n a l  f l o w  d e s c r i b e d  in  [ 1 0 ] .  C o e f f i c i e n t s  e ~ i / ~  were  computed  
u s i n g  Eq. ( 2 . 3 ) ,  t a k i n g  i n t o  a c c o u n t  Eqs .  ( 2 . 4 )  and ( 2 . 6 ) .  F i g u r e  6 shows computed  p r o f i l e s  

�9 �9 m of  eddy v i s c o s i t y  ~ r r / ~  a t  d i f f e r e n t  s e c t i o n s  of  t h e  p i p e  a t  Re = 3 0 0 , 0 0 0 .  The r e s u l t s  o b -  
t a i n e d  f rom Eq. ( 1 . 1 )  i s  com pa red  w i t h  t h e  computed  r e s u l t s .  The da shed  l i n e s  in  F i g .  6 i n -  

m d i c a t e  g r r / V  o b t a i n e d  f r o m  Eq. ( 1 . 1 ) ,  t h e  c o n t i n u o u s  l i n e s  a r e  o b t a i n e d  f r o m  Eq. ( 2 . 4 ) .  The 
c u r v e s  1-5 c o r r e s p o n d  to  s e c t i o n s  x / R  = 0 . 3 8 ,  6 . 8 5 ,  17 .3 ,  3 7 . 7 ,  and 140 (Re = 3 0 0 , 0 0 0 ) .  

I t  i s  s e e n  f r o m  F i g .  6 t h a t  when Eq. ( 1 . 1 )  i s  r e p l a c e d  by Eq. ( 2 . 4 ) ,  t h e  computed  c o e f -  
f i c i e n t s  ~ r / ~  a r e  a p p r e c i a b l y  r e d u c e d  in  t h e  c e n t r a l  p a r t  o f  t h e  e n t r a n c e  r e g i o n  of  t h e  f l o w  
f i e l d  which l e a d s ,  r e s p e c t i v e l y ,  t o  a l o n g e r  s t a b l e  r e g i o n  when compared  to  t h e  c o m p u t a t i o n s  

f r o m  [ 1 0 ] .  

A weak ly  e x p r e s s e d  l o c a l  maximum of  t h e  l o n g i t u d i n a l  v e l o c i t y  component  h a s  a p p e a r e d  on 
t h e  a x i s  o f  t he  p i p e  a t  a d i s t a n c e  o f  a b o u t  20 d i a m e t e r s  f r o m  t h e  e n t r a n c e ,  which  i s  e s t a b -  
l i s h e d  by  e x p e r i m e n t s  b u t  was n o t  o b s e r v e d  in  e a r l i e r  c o m p u t a t i o n s  [ 1 0 ] .  

5.  A p p l i c a t i o n  o f  t h e  Model .  On t h e  b a s i s  o f  t h e  g e n e r a l i t y  o f  t h e  g o v e r n i n g  e q u a t i o n s  
and t h e  h y p o t h e s e s  u s e d  h e r e  and a l s o  f rom p r e l i m i n a r y  c o m p u t a t i o n s  of  t h e  v e l o c i t y  and t e m -  

p e r a t u r e  f i e l d s  u s i n g  Eqs .  ( 1 . 5 ) - ( 1 . 7 )  and ( 2 . 4 ) - ( 2 . 1 2 ) ,  i t  i s  p o s s i b l e  to  s t a t e  t h a t  t h e  
g i v e n  v a r i a n t  o f  t h e  model  f o r  t u r b u l e n t  t r a n s f e r  in  p r i n c i p l e  makes i t  p o s s i b l e  to  compute  
v e l o c i t y  and t e m p e r a t u r e  f i e l d s  in  t h e  h y d r o d y n a m i c  and t h e r m a l  s t a b i l i z a t i o n  zones  in c h a n -  
n e l s  o f  a r b i t r a r y  fo rm.  However ,  in  o r d e r  to  compute  j e t s  o r  e x t e r n a l  f l o w s  i t  i s  n e c e s s a r y  
t o  improve  t h e  e q u a t i o n s  f o r  t u r b u l e n t  l e n g t h  s c a l e s  L and L i .  

~The d i f f e r e n c e  in  t he  v a l u e s  of  e m p i r i c a l  c o e f f i c i e n t s  f r o m  the  c o r r e s p o n d i n g  v a l u e s  g i v e n  
in [16] i s  due t o  t h e  c h o i c e  of  ~(M, M0). 
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From the point of view of the approximations used in the present paper for the turbulent 
energy equation (2.1), the system of Eqs. (1.5)-(1.7) and (2.4)-(2.12) can be considered as a 
three-dimensional model for turbulent transfer [I, 2] "to the second-order approxi~mtion." 
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